
Edit Field Library API Reference
©1992-3 Graham Cox.

1. Introduction

These notes provide a programmer’s reference for the EditFields library, a code library
that implements editable text fields in any window, which work similarly to editable fields
in dialogs, except that because they can be used in any window, they are more flexible.
The library described here contains relatively low-level code routines. It is envisaged that
a higher level resource based code library which is built on this one will be written shortly.

2. API code level interface.

EditFieldHdl NewEditField(Rect *bounds,int IDnum,Str255 *theText);

Creates a new edit field with the given ID number, bounding rectangle and string. The
bounds rect is in the window’s local coordinates, and will be used for hit testing the field,
etc. Field type is set to fieldNoRestriction, which is a free-form field. You must link a field
into a set of fields after creation.

void LinkEditField(EFListHdl efList,EditFieldHdl eField);

Links a newly created edit field into the field set efList, which must also have been
created. Fields are stored in memory in a linked list structure.

void Draw1Field(EditFieldHdl theField);

Draws the given field in the current port within its bounding rect. n.b. When drawn, fields
are framed 3 pixels outside the boundsRect. This is identical to the dialog manager’s
behaviour for dialogs. When declaring a field’s boundsrect, allow for the extra space.

void SetFieldText(EditFieldHdl theField,Str255 *theText);

Sets the given field’s text to the string passed. This only changes the field’s data, it does
not cause a change to the field on screen. It also sets the fieldDataChanged flag in the
field.

void GetFieldText(EditFieldHdl theField,Str255 *theText);

Returns the field’s text string. If this is the current field, the text may be out of date if an
editing change has taken place, in which case you need to update the field data before
fetching it.

void SetFPField(EditFieldHdl theField,extended fpValue,int nDecPlaces);

Sets the given field to a string representation of the given floating point value, with
nDecPlaces decimal places.
extended GetFPField(EditFieldHdl theField);

Returns a floating point value which is the given field’s text converted to fp format.

void SetEdFlags(EditFieldHdl theField,long theFlags);

Sets the field’s flags to the given value.

long GetEdFlags(EditFieldHdl theField);

Returns the current flags from the field.

EFListHdl NewEditFieldList(WindowPtr ownerWindow);

Creates a new, fully initialised edit field set with the given window as its ‘owner’. This call
initialises a TextEdit record for editing the text, but does not create any fields itself. You
create fields with NewEditField and link them to the field set with LinkEditField.

void DisposeEditFieldList(EFListHdl theList);

Disposes of an edit field set and any fields linked to it.

EditFieldHdl GetIndexedField(EFListHdl efList,int theIndex);

Returns the handle to the field with the given ID number, or NIL if none.

void IncDecCurrentField(EFListHdl efList,Boolean incDecFlag);

Increments or decrements the current field in a set by one. The field type is taken into
account, so that time value fields are correctly adjusted. This routine applies to numeric
type fields only.

void DrawEditFields(EFListHdl efList);

Updates all edit fields in a set. The current field is updated by calling TEUpdate, and all
others by calling Draw1Field. Normally called when needed as part of a window’s update
procedure.

void SelectEditField(EFListHdl efList,int theIndex);

Changes the current edit field to the field with the given index number. The current field, if
different, is updated before switching, so any editing changes made to the field will be
correctly recorded.

int FindEditField(EFListHdl efList,Point mClick);

Returns the ID number of the edit field containing the given point, or zero if none do.
Normally called for a mouse-down event to determine which filed, if any, was clicked.

void EFIdle(EFListHdl efList);

Call repeatedly during your main loop so that the caret in the current field is blinked
correctly.

int CheckFieldLimits(EditFieldHdl theField,EFListHdl efList);

For a numeric field, the current value is checked against its bounds value, and pinned
accordingly. Normally called when switching the current field, this function returns FALSE
if a value had to be pinned- in this case the text is set to the pinned value and
highlighted. If no pinning was necessary, the function returns TRUE. You should NOT
SWITCH to a new field if a value of FALSE was returned, as the user should be given the
opportunity to correct the value before moving on.

void KeyField(EFListHdl efList,char theKey);

Passes the given key character to the current field, filtering out characters that cannot be
accepted. For example, numeric field types will not accept alphabetic characters. The
keys used to change fields, for example TAB, are not handled here and should already
have been filtered out before calling this function.

void SetAndUpdateField(EFListHdl efList,int theFieldID,long fValue);

Sets the field with the given ID to the value passed, updating on screen as necessary.

